3.1.29 \(\int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^2} \, dx\) [29]

3.1.29.1 Optimal result
3.1.29.2 Mathematica [C] (verified)
3.1.29.3 Rubi [A] (warning: unable to verify)
3.1.29.4 Maple [A] (verified)
3.1.29.5 Fricas [C] (verification not implemented)
3.1.29.6 Sympy [F]
3.1.29.7 Maxima [F(-2)]
3.1.29.8 Giac [F]
3.1.29.9 Mupad [B] (verification not implemented)

3.1.29.1 Optimal result

Integrand size = 25, antiderivative size = 281 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^2} \, dx=-\frac {3 e^{5/2} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d}-\frac {e^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d}+\frac {e^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2+a^2 \cot (c+d x)\right )}-\frac {e^{5/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d}+\frac {e^{5/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d} \]

output
-3/2*e^(5/2)*arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d-1/4*e^(5/2)*arctan 
(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d*2^(1/2)+1/4*e^(5/2)*arctan( 
1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d*2^(1/2)-1/8*e^(5/2)*ln(e^(1/ 
2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))/a^2/d*2^(1/2)+1/8*e^(5 
/2)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/a^2/d*2^(1 
/2)+1/2*e^2*(e*cot(d*x+c))^(1/2)/d/(a^2+a^2*cot(d*x+c))
 
3.1.29.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.38 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.02 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^2} \, dx=\frac {e^2 \left (-24 \cot ^3(c+d x) \sqrt {e \cot (c+d x)} \operatorname {Hypergeometric2F1}\left (2,\frac {7}{2},\frac {9}{2},-\cot (c+d x)\right )+7 \left (24 \sqrt {e} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )-6 \sqrt {2} \sqrt {e} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )+6 \sqrt {2} \sqrt {e} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )-48 \sqrt {e \cot (c+d x)}+\frac {8 (e \cot (c+d x))^{3/2}}{e}-3 \sqrt {2} \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )+3 \sqrt {2} \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )\right )\right )}{168 a^2 d} \]

input
Integrate[(e*Cot[c + d*x])^(5/2)/(a + a*Cot[c + d*x])^2,x]
 
output
(e^2*(-24*Cot[c + d*x]^3*Sqrt[e*Cot[c + d*x]]*Hypergeometric2F1[2, 7/2, 9/ 
2, -Cot[c + d*x]] + 7*(24*Sqrt[e]*ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]] - 6 
*Sqrt[2]*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]] + 6*Sq 
rt[2]*Sqrt[e]*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]] - 48*Sqrt 
[e*Cot[c + d*x]] + (8*(e*Cot[c + d*x])^(3/2))/e - 3*Sqrt[2]*Sqrt[e]*Log[Sq 
rt[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]] + 3*Sqrt[2]*S 
qrt[e]*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]]) 
))/(168*a^2*d)
 
3.1.29.3 Rubi [A] (warning: unable to verify)

Time = 1.20 (sec) , antiderivative size = 254, normalized size of antiderivative = 0.90, number of steps used = 22, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.840, Rules used = {3042, 4048, 27, 3042, 4136, 27, 3042, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 27, 73, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cot (c+d x))^{5/2}}{(a \cot (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-e \tan \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}{\left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle \frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}-\frac {\int -\frac {a^2 e^3+3 a^2 \cot ^2(c+d x) e^3-2 a^2 \cot (c+d x) e^3}{2 \sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx}{2 a^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a^2 e^3+3 a^2 \cot ^2(c+d x) e^3-2 a^2 \cot (c+d x) e^3}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a^2 e^3+3 a^2 \tan \left (c+d x+\frac {\pi }{2}\right )^2 e^3+2 a^2 \tan \left (c+d x+\frac {\pi }{2}\right ) e^3}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx+\frac {\int -\frac {4 a^3 e^3}{\sqrt {e \cot (c+d x)}}dx}{2 a^2}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx-2 a e^3 \int \frac {1}{\sqrt {e \cot (c+d x)}}dx}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx-2 a e^3 \int \frac {1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {2 a e^4 \int \frac {1}{\sqrt {e \cot (c+d x)} \left (\cot ^2(c+d x) e^2+e^2\right )}d(e \cot (c+d x))}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \int \frac {1}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \left (\frac {\int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}}{2 e}+\frac {\int \frac {e^2 \cot ^2(c+d x)+e}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \left (\frac {\frac {1}{2} \int \frac {1}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 e}+\frac {\int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \left (\frac {\frac {\int \frac {1}{-e^2 \cot ^2(c+d x)-1}d\left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e^2 \cot ^2(c+d x)-1}d\left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \left (\frac {\int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {3 a^2 e^3 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {4 a e^4 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\frac {3 a^2 e^3 \int \frac {1}{a \sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{d}+\frac {4 a e^4 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 a e^3 \int \frac {1}{\sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{d}+\frac {4 a e^4 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\frac {4 a e^4 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}}{2 e}\right )}{d}-\frac {6 a e^2 \int \frac {1}{\frac {\cot ^2(c+d x)}{e}+1}d\sqrt {e \cot (c+d x)}}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {6 a e^{5/2} \arctan \left (\frac {\cot (c+d x)}{\sqrt {e}}\right )}{d}+\frac {4 a e^4 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}}{2 e}\right )}{d}}{4 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{2 d \left (a^2 \cot (c+d x)+a^2\right )}\)

input
Int[(e*Cot[c + d*x])^(5/2)/(a + a*Cot[c + d*x])^2,x]
 
output
(e^2*Sqrt[e*Cot[c + d*x]])/(2*d*(a^2 + a^2*Cot[c + d*x])) + ((6*a*e^(5/2)* 
ArcTan[Cot[c + d*x]/Sqrt[e]])/d + (4*a*e^4*((-(ArcTan[1 - Sqrt[2]*Sqrt[e]* 
Cot[c + d*x]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 + Sqrt[2]*Sqrt[e]*Cot[c + d*x] 
]/(Sqrt[2]*Sqrt[e]))/(2*e) + (-1/2*Log[e - Sqrt[2]*e^(3/2)*Cot[c + d*x] + 
e^2*Cot[c + d*x]^2]/(Sqrt[2]*Sqrt[e]) + Log[e + Sqrt[2]*e^(3/2)*Cot[c + d* 
x] + e^2*Cot[c + d*x]^2]/(2*Sqrt[2]*Sqrt[e]))/(2*e)))/d)/(4*a^3)
 

3.1.29.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
3.1.29.4 Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.68

method result size
derivativedivides \(-\frac {2 e^{3} \left (-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 e}-\frac {\sqrt {e \cot \left (d x +c \right )}}{4 \left (e \cot \left (d x +c \right )+e \right )}+\frac {3 \arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{4 \sqrt {e}}\right )}{d \,a^{2}}\) \(191\)
default \(-\frac {2 e^{3} \left (-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 e}-\frac {\sqrt {e \cot \left (d x +c \right )}}{4 \left (e \cot \left (d x +c \right )+e \right )}+\frac {3 \arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{4 \sqrt {e}}\right )}{d \,a^{2}}\) \(191\)

input
int((e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-2/d/a^2*e^3*(-1/16/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e 
*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d 
*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x 
+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))-1/4*( 
e*cot(d*x+c))^(1/2)/(e*cot(d*x+c)+e)+3/4/e^(1/2)*arctan((e*cot(d*x+c))^(1/ 
2)/e^(1/2)))
 
3.1.29.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 1173, normalized size of antiderivative = 4.17 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^2} \, dx=\text {Too large to display} \]

input
integrate((e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^2,x, algorithm="fricas")
 
output
[1/4*(2*e^2*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*sin(2*d*x + 2* 
c) + 3*(e^2*cos(2*d*x + 2*c) + e^2*sin(2*d*x + 2*c) + e^2)*sqrt(-e)*log((e 
*cos(2*d*x + 2*c) - e*sin(2*d*x + 2*c) - 2*sqrt(-e)*sqrt((e*cos(2*d*x + 2* 
c) + e)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c) + e)/(cos(2*d*x + 2*c) + sin(2* 
d*x + 2*c) + 1)) + (a^2*d*cos(2*d*x + 2*c) + a^2*d*sin(2*d*x + 2*c) + a^2* 
d)*(-e^10/(a^8*d^4))^(1/4)*log(a^2*d*(-e^10/(a^8*d^4))^(1/4) + e^2*sqrt((e 
*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))) - (-I*a^2*d*cos(2*d*x + 2*c) - I 
*a^2*d*sin(2*d*x + 2*c) - I*a^2*d)*(-e^10/(a^8*d^4))^(1/4)*log(I*a^2*d*(-e 
^10/(a^8*d^4))^(1/4) + e^2*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) 
) - (I*a^2*d*cos(2*d*x + 2*c) + I*a^2*d*sin(2*d*x + 2*c) + I*a^2*d)*(-e^10 
/(a^8*d^4))^(1/4)*log(-I*a^2*d*(-e^10/(a^8*d^4))^(1/4) + e^2*sqrt((e*cos(2 
*d*x + 2*c) + e)/sin(2*d*x + 2*c))) - (a^2*d*cos(2*d*x + 2*c) + a^2*d*sin( 
2*d*x + 2*c) + a^2*d)*(-e^10/(a^8*d^4))^(1/4)*log(-a^2*d*(-e^10/(a^8*d^4)) 
^(1/4) + e^2*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))))/(a^2*d*cos( 
2*d*x + 2*c) + a^2*d*sin(2*d*x + 2*c) + a^2*d), 1/4*(2*e^2*sqrt((e*cos(2*d 
*x + 2*c) + e)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c) - 6*(e^2*cos(2*d*x + 2*c 
) + e^2*sin(2*d*x + 2*c) + e^2)*sqrt(e)*arctan(sqrt((e*cos(2*d*x + 2*c) + 
e)/sin(2*d*x + 2*c))/sqrt(e)) + (a^2*d*cos(2*d*x + 2*c) + a^2*d*sin(2*d*x 
+ 2*c) + a^2*d)*(-e^10/(a^8*d^4))^(1/4)*log(a^2*d*(-e^10/(a^8*d^4))^(1/4) 
+ e^2*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))) - (-I*a^2*d*cos(...
 
3.1.29.6 Sympy [F]

\[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^2} \, dx=\frac {\int \frac {\left (e \cot {\left (c + d x \right )}\right )^{\frac {5}{2}}}{\cot ^{2}{\left (c + d x \right )} + 2 \cot {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

input
integrate((e*cot(d*x+c))**(5/2)/(a+a*cot(d*x+c))**2,x)
 
output
Integral((e*cot(c + d*x))**(5/2)/(cot(c + d*x)**2 + 2*cot(c + d*x) + 1), x 
)/a**2
 
3.1.29.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.29.8 Giac [F]

\[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^2} \, dx=\int { \frac {\left (e \cot \left (d x + c\right )\right )^{\frac {5}{2}}}{{\left (a \cot \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^2,x, algorithm="giac")
 
output
integrate((e*cot(d*x + c))^(5/2)/(a*cot(d*x + c) + a)^2, x)
 
3.1.29.9 Mupad [B] (verification not implemented)

Time = 13.30 (sec) , antiderivative size = 375, normalized size of antiderivative = 1.33 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^2} \, dx=\frac {e^3\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{2\,\left (a^2\,d\,e+a^2\,d\,e\,\mathrm {cot}\left (c+d\,x\right )\right )}-\mathrm {atan}\left (\frac {e^{20}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {e^{10}}{256\,a^8\,d^4}\right )}^{1/4}\,16{}\mathrm {i}}{\frac {36\,e^{23}}{a^2\,d}+64\,a^2\,d\,e^{18}\,\sqrt {-\frac {e^{10}}{256\,a^8\,d^4}}}-\frac {e^{15}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {e^{10}}{256\,a^8\,d^4}\right )}^{3/4}\,2304{}\mathrm {i}}{\frac {36\,e^{23}}{a^6\,d^3}+\frac {64\,e^{18}\,\sqrt {-\frac {e^{10}}{256\,a^8\,d^4}}}{a^2\,d}}\right )\,{\left (-\frac {e^{10}}{256\,a^8\,d^4}\right )}^{1/4}\,2{}\mathrm {i}-\frac {\mathrm {atan}\left (\frac {4\,e^{20}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {e^{10}}{a^8\,d^4}\right )}^{1/4}}{\frac {36\,e^{23}}{a^2\,d}-4\,a^2\,d\,e^{18}\,\sqrt {-\frac {e^{10}}{a^8\,d^4}}}+\frac {36\,e^{15}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {e^{10}}{a^8\,d^4}\right )}^{3/4}}{\frac {36\,e^{23}}{a^6\,d^3}-\frac {4\,e^{18}\,\sqrt {-\frac {e^{10}}{a^8\,d^4}}}{a^2\,d}}\right )\,{\left (-\frac {e^{10}}{a^8\,d^4}\right )}^{1/4}}{2}-\frac {\mathrm {atan}\left (\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,\sqrt {-e^5}\,1{}\mathrm {i}}{e^3}\right )\,\sqrt {-e^5}\,3{}\mathrm {i}}{2\,a^2\,d} \]

input
int((e*cot(c + d*x))^(5/2)/(a + a*cot(c + d*x))^2,x)
 
output
(e^3*(e*cot(c + d*x))^(1/2))/(2*(a^2*d*e + a^2*d*e*cot(c + d*x))) - atan(( 
e^20*(e*cot(c + d*x))^(1/2)*(-e^10/(256*a^8*d^4))^(1/4)*16i)/((36*e^23)/(a 
^2*d) + 64*a^2*d*e^18*(-e^10/(256*a^8*d^4))^(1/2)) - (e^15*(e*cot(c + d*x) 
)^(1/2)*(-e^10/(256*a^8*d^4))^(3/4)*2304i)/((36*e^23)/(a^6*d^3) + (64*e^18 
*(-e^10/(256*a^8*d^4))^(1/2))/(a^2*d)))*(-e^10/(256*a^8*d^4))^(1/4)*2i - ( 
atan((4*e^20*(e*cot(c + d*x))^(1/2)*(-e^10/(a^8*d^4))^(1/4))/((36*e^23)/(a 
^2*d) - 4*a^2*d*e^18*(-e^10/(a^8*d^4))^(1/2)) + (36*e^15*(e*cot(c + d*x))^ 
(1/2)*(-e^10/(a^8*d^4))^(3/4))/((36*e^23)/(a^6*d^3) - (4*e^18*(-e^10/(a^8* 
d^4))^(1/2))/(a^2*d)))*(-e^10/(a^8*d^4))^(1/4))/2 - (atan(((e*cot(c + d*x) 
)^(1/2)*(-e^5)^(1/2)*1i)/e^3)*(-e^5)^(1/2)*3i)/(2*a^2*d)